A Brief History of Free-Response ROC Paradigm Data Analysis 리뷰
A Brief History of Free-Response ROC Paradigm Data Analysis 리뷰
Info
Chakraborty DP. A brief history of free-response receiver operating characteristic paradigm data analysis. Acad Radiol. 2013 Jul;20(7):915-9. doi: 10.1016/j.acra.2013.03.001. Epub 2013 Apr 12. PMID: 23583665; PMCID: PMC3679336.
Intro
- “Free-Response”
- the detection of brief audio tone against a white-noise background 연구 관련하여 1961년에 Egan이 처음 사용
- Listener는 white-noise 사이에 true tone이 몇개가 있는 지, 알 수 없는 상황
- Medical Imaging
- Mammographer도 how many lesions이 있는지 미리 알 수 없음
- the image must be searched for regions that appear suspicious for cancer
- If the level of suspicion of a particular suspicious region > min clinical reporting threshold
- the mammographer reports it(digitally outline and annotate the suspicious region)
- Screening reports
- the locations of regions that exceed the threshold
- the corresponding levels of suspicion (BIRADS로 report)
- Free-response is a search paradigm
- FROC
- Free response receiver operating characteristic (FROC) curve
- free-response task의 performance를 visualizing 하기 위해 Miller가 auditory domain에서 처음 도입
- Radiology application에서는 Bunch가 처음 도입
- Buch et al
- localization task에 대해 다룸
- location-level false positive vs location-level false negative에 대한 ambiguity on same image
- 두 실수가 동시에 발생하였더라도 the image is scored as a “perfect” image level true positive가 될 수 있음
- the first imaging FROC experiment 수행
- lesion localization task에서 prototype digital chest imaging device와 conventional analog device를 비교
- Challenging factor
- the number of marks on an image
= 0
- must be regarded as modality, reader- and image-dependent random variable
- the randomness in the number of marks, the usual sources of randomness of the ratings due to image sampling and reader sampling 때문에 FROC 분석이 힘듬
- the number of marks on an image
FROC DATA: Mark-Rating Pairs
- The mark
- the location of the suspicious region
- The rating
- confidence level that the region contains a lesion
- Lesion Localization (LL)인 mark
- A mark is close enough to a real lesion 이면 LL
- Location level의 “True Positive”를 의미
- non-lesion localization(NL)인 mark는 location level의 “False Positive”
- Close enough?를 어떻게 정의
- the proximity criterion
- Acceptance radius
- Clinical decision의 영역
DATA ANALYSIS
Operating Characteristics and Figures of Merit
- FOM
- figures of merit
- observed collection of NLs and LLs로부터 추정함
- valid FOM의 조건
- correct decision은 reward, incorrect decision은 penalize
- ROC curve
- AUC가 suitable FOM임
The FROC curve and associated FOMs
- the FROC curve
- plot of LL fraction vs NL fraction
- LLF: the total number of LLs at the given threshold/(the total number of lesions)
- NLF: the total number of NLs/(the total number of images) ![[Pasted image 20240823223115.png]]
- Not contained within the unit square
- x-axis
- mean number of NLs per image
- 엄밀히 말해서 “improper fraction” 임
- 이론적으로 average number of FPs per image가 무한정 커질 수 있음
- the AFROC curve
- the plot of LLF vs FPF(False positive fraction)
- completely contained within the unit square
- x-axis and y-axis 모두 probability를 의미
- y-axis는 FROC curve와 동일
- x-axis: FPF
- an estimate of the probability P(FP) of observing FP
- FPF: (# of FP images)/(# of total normal images)
- Buch et al
- P(n)
- the probability of observing an image with n NLs
- Poisson distribution 사용 ![[Pasted image 20240823223133.png]]
- Lambda: the mean of the distribution, estimated by NLF
- P(FP) ![[Pasted image 20240823223144.png]]
- the complement of the probability of observing an image with zero NLs
- p(FP) = 1 - P(0)
- the complement of the probability of observing an image with zero NLs
- P(n)
Estimating the FOM: Parametric Methods
- A fitted curve
- untenable independence assumption 적용
- 비판이 많았음
- 가령, the probability of occurrence of NLs on an image is independent of the number of true lesions present in the image와 같은 가정은 reality와 맞지 않음
- the probability of NLs is typically larger on normal images than on abnormal images
- 또, LL mark-rating pairs on an image are independent 가정도 안 맞음
- in fact, satisfaction of search effect have been reported
- the oberserver가 one lesion을 일단 찾으면 다른 lesion을 mark할 경향이 낮아짐
- in fact, satisfaction of search effect have been reported
Estimating the FOM: Nonparametric Methods
- the trapezoidal area under the ROC curve를 FOM으로 사용
- No curve fitting
- the empirical probability 사용
- an abnormal image rating exceeds that of a normal image일 확률을 의미
- the area under the trapezoidal ROC curve와 같은 값임
- Image-level bootstrapping을 사용하기도 함
Other FROC FOMs
- The LAMBDA FOM
- the EFROC FOM
Should one count NLs on Both Normal and Abnormal Images?
- the FROC curve abscissa
- traditionally defined over all images
- if the observers’s tendency to generate NLs is independent of the presence of true lesions, this would be legitimate
- 하지만, 실제로는 normal case에서 more NL이 발생
- asymptotic FROC curve will depend on the case mix(i.e, the ratio of abnormal to the total number of cases)
- Solution: to define NLF over normal images only
JAFROC SOFTWARE
FOMs
- MRMC 연구에서 많이 활용
- nonparametric FOMS Estimation을 이런 software가 지원
Significance Testing
- DBM ANOVA
- The Dorfman Berbaum and Metz(DBM) analysis of variance (ANOVA)
- For MRMC ROC data
- pseudo-value matrix 사용
DISCUSSION
- The history of research in free-response data analysis를 다룸
- 어떤 FOM이 significance of the difference between two FOMs를 검정하기에 더 좋은 것일까를 찾는 과정이었음
- DBM et al과 Hillis et al의 연구가 크게 기여
- LROC Approach
- the localization ROC approach
- single rating to the image and marks the most suspicious region in the image
- ROI approach
- the region of interest
- observer rate each region for presence of disease
This post is licensed under CC BY 4.0 by the author.