Post

A Brief History of Free-Response ROC Paradigm Data Analysis 리뷰

A Brief History of Free-Response ROC Paradigm Data Analysis 리뷰

Info

Chakraborty DP. A brief history of free-response receiver operating characteristic paradigm data analysis. Acad Radiol. 2013 Jul;20(7):915-9. doi: 10.1016/j.acra.2013.03.001. Epub 2013 Apr 12. PMID: 23583665; PMCID: PMC3679336.

Intro

  • “Free-Response”
    • the detection of brief audio tone against a white-noise background 연구 관련하여 1961년에 Egan이 처음 사용
    • Listener는 white-noise 사이에 true tone이 몇개가 있는 지, 알 수 없는 상황
    • Medical Imaging
      • Mammographer도 how many lesions이 있는지 미리 알 수 없음
      • the image must be searched for regions that appear suspicious for cancer
      • If the level of suspicion of a particular suspicious region > min clinical reporting threshold
        • the mammographer reports it(digitally outline and annotate the suspicious region)
      • Screening reports
        • the locations of regions that exceed the threshold
        • the corresponding levels of suspicion (BIRADS로 report)
    • Free-response is a search paradigm
  • FROC
    • Free response receiver operating characteristic (FROC) curve
    • free-response task의 performance를 visualizing 하기 위해 Miller가 auditory domain에서 처음 도입
    • Radiology application에서는 Bunch가 처음 도입
  • Buch et al
    • localization task에 대해 다룸
    • location-level false positive vs location-level false negative에 대한 ambiguity on same image
    • 두 실수가 동시에 발생하였더라도 the image is scored as a “perfect” image level true positive가 될 수 있음
    • the first imaging FROC experiment 수행
      • lesion localization task에서 prototype digital chest imaging device와 conventional analog device를 비교
  • Challenging factor
    • the number of marks on an image
      • = 0

      • must be regarded as modality, reader- and image-dependent random variable
      • the randomness in the number of marks, the usual sources of randomness of the ratings due to image sampling and reader sampling 때문에 FROC 분석이 힘듬

FROC DATA: Mark-Rating Pairs

  • The mark
    • the location of the suspicious region
  • The rating
    • confidence level that the region contains a lesion
  • Lesion Localization (LL)인 mark
    • A mark is close enough to a real lesion 이면 LL
    • Location level의 “True Positive”를 의미
    • non-lesion localization(NL)인 mark는 location level의 “False Positive”
  • Close enough?를 어떻게 정의
    • the proximity criterion
    • Acceptance radius
    • Clinical decision의 영역

DATA ANALYSIS

Operating Characteristics and Figures of Merit

  • FOM
    • figures of merit
    • observed collection of NLs and LLs로부터 추정함
    • valid FOM의 조건
      • correct decision은 reward, incorrect decision은 penalize
    • ROC curve
      • AUC가 suitable FOM임

The FROC curve and associated FOMs

  • the FROC curve
    • plot of LL fraction vs NL fraction
    • LLF: the total number of LLs at the given threshold/(the total number of lesions)
    • NLF: the total number of NLs/(the total number of images) ![[Pasted image 20240823223115.png]]
    • Not contained within the unit square
    • x-axis
      • mean number of NLs per image
      • 엄밀히 말해서 “improper fraction” 임
      • 이론적으로 average number of FPs per image가 무한정 커질 수 있음
  • the AFROC curve
    • the plot of LLF vs FPF(False positive fraction)
    • completely contained within the unit square
    • x-axis and y-axis 모두 probability를 의미
    • y-axis는 FROC curve와 동일
    • x-axis: FPF
      • an estimate of the probability P(FP) of observing FP
      • FPF: (# of FP images)/(# of total normal images)
    • Buch et al
      • P(n)
        • the probability of observing an image with n NLs
        • Poisson distribution 사용 ![[Pasted image 20240823223133.png]]
        • Lambda: the mean of the distribution, estimated by NLF
      • P(FP) ![[Pasted image 20240823223144.png]]
        • the complement of the probability of observing an image with zero NLs
          • p(FP) = 1 - P(0)

Estimating the FOM: Parametric Methods

  • A fitted curve
  • untenable independence assumption 적용
    • 비판이 많았음
    • 가령, the probability of occurrence of NLs on an image is independent of the number of true lesions present in the image와 같은 가정은 reality와 맞지 않음
      • the probability of NLs is typically larger on normal images than on abnormal images
    • 또, LL mark-rating pairs on an image are independent 가정도 안 맞음
      • in fact, satisfaction of search effect have been reported
        • the oberserver가 one lesion을 일단 찾으면 다른 lesion을 mark할 경향이 낮아짐

Estimating the FOM: Nonparametric Methods

  • the trapezoidal area under the ROC curve를 FOM으로 사용
  • No curve fitting
  • the empirical probability 사용
    • an abnormal image rating exceeds that of a normal image일 확률을 의미
    • the area under the trapezoidal ROC curve와 같은 값임
  • Image-level bootstrapping을 사용하기도 함

Other FROC FOMs

  • The LAMBDA FOM
  • the EFROC FOM

Should one count NLs on Both Normal and Abnormal Images?

  • the FROC curve abscissa
    • traditionally defined over all images
    • if the observers’s tendency to generate NLs is independent of the presence of true lesions, this would be legitimate
    • 하지만, 실제로는 normal case에서 more NL이 발생
    • asymptotic FROC curve will depend on the case mix(i.e, the ratio of abnormal to the total number of cases)
    • Solution: to define NLF over normal images only

JAFROC SOFTWARE

FOMs

  • MRMC 연구에서 많이 활용
  • nonparametric FOMS Estimation을 이런 software가 지원

Significance Testing

  • DBM ANOVA
    • The Dorfman Berbaum and Metz(DBM) analysis of variance (ANOVA)
    • For MRMC ROC data
    • pseudo-value matrix 사용

DISCUSSION

  • The history of research in free-response data analysis를 다룸
    • 어떤 FOM이 significance of the difference between two FOMs를 검정하기에 더 좋은 것일까를 찾는 과정이었음
    • DBM et al과 Hillis et al의 연구가 크게 기여
  • LROC Approach
    • the localization ROC approach
    • single rating to the image and marks the most suspicious region in the image
  • ROI approach
    • the region of interest
    • observer rate each region for presence of disease
This post is licensed under CC BY 4.0 by the author.